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We show, via numerical simulations, that the fidelity decay behavior of quasi-integrable systems is strongly
dependent on the location of the initial coherent state with respect to the underlying classical phase space. In
parallel to classical fidelity, the quantum fidelity generally exhibits Gaussian decay when the perturbation
affects the frequency of periodic phase space orbits and power-law decay when the perturbation changes the
shape of the orbits. For both behaviors the decay rate also depends on initial state location. The spectrum of the
initial states in the eigenbasis of the system reflects the different fidelity decay behaviors. In addition, states
with initial Gaussian decay exhibit a stage of exponential decay for strong perturbations. This elicits a surpris-
ing phenomenon: a strong perturbation can induce a higher fidelity than a weak perturbation of the same type.
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Manifestations of chaos and complexity in the quantum
realm have been widely explored in connection with the cor-
respondence principle between classical and quantum me-
chanicsf1g. An example is a system’s response to small per-
turbations of its Hamiltonian. Peresf2,3g conjectured that
this response serves as an indicator of chaos applicable to
both the classical and quantum realms. That is, in both
realms the behavior of fidelity between a state evolved under
perturbed and unperturbed dynamics depends on whether or
not the dynamics is chaotic.

Peres’ conjecture found an experimental venue in nuclear
magnetic resonancesNMRd polarization echoes. In these ex-
periments the initial state of the system is evolved forward
under its internal dipolar Hamiltonian and then inverted by a
sequence of radio-frequency pulsesf4g. The inverted Hamil-
tonian, however, will be not be an exact reversal of the in-
ternal Hamiltonian due to pulse imperfections and interac-
tions with the environment. These perturbations reduce the
subsequent echo amplitude which is the measure of fidelity.

The polarization echo as a means of studying dynamical
irreversibility was applied in Ref.f5g, where it was noted
that the echo decay behavior as a function of time can be
exponential or Gaussian, depending on the molecule under
investigation. The connection between these results and the
exponential fidelity decay predicted for systems exhibiting
quantum chaosf3g was made in Ref.f6g.

Encouraged by these experimental investigations, Jalabert
and Pastawskif7g applied semiclassical analysis to the evo-
lution of what they termed the Loschmidt echo, or fidelity
decay. Their analysis showed that for chaotic systems, when
the perturbation is strong enough such that perturbation
theory fails, the fidelity decay is comprised of two exponen-
tially decaying terms. The first of these terms is dominant for
small errors and can be described by the Fermi golden rule
f8,9g. The second term is dominant for strong errors, inde-
pendent of perturbation strength, and decays at a rate given

by the analogous classical system’s Lyapunov exponent.
The identification of a classically chaotic signature in

quantum systems has led to detailed studies of fidelity decay
behavior. For quantum systems that are analogs of classically
chaotic systems, a number of regimes have been identified
based on perturbation strength. For weak perturbations, such
that perturbation theory is valid, the fidelity decay is Gauss-
ian f2,8,10g. For stronger perturbations, in the Fermi golden
rule regime, the fidelity decays exponentially with a rate de-
termined by the perturbation Hamiltonian and perturbation
strengthf7,8,11–13g. In many systems the rate of the expo-
nential increases as the square of the perturbation strength
f8g sseef14g for an exceptional cased until saturating at the
underlying classical systems’ Lyapunov exponentf7,9g or at
the bandwidth of the Hamiltonianf8g. The crossover be-
tween the various regimesf15–17g and the fidelity saturation
level f18,19g have also been explored. Quantum fidelity de-
cay simulations have also been carried out in weakly chaotic
systemsf20g, and at the edge of quantum chaosf21g.

Relationships between fidelity decay behavior and other
quantum phenomena are also found in the literature. These
include the Fourier transform relation between fidelity decay
and the local density of statesf8,22g, issues of classical-
quantum correspondencef23g, reversibility f24g, and deco-
herencef25g. We also note that fidelity decay studies can be
carried out on a quantum computerf13,26g, and that the
fidelity has been experimentally determined for a three-qubit
quantum baker’s map on a NMR quantum information pro-
cessorf27g.

Studies of fidelity decay in quantum systems have spurred
interest in the fidelity decay of classical systemsf28g. For
chaotic classical systems it has been shown that the
asymptotic fidelity decay can be either exponential or power
law, analogous to the asymptotic decay of correlation func-
tions f29g. Faster than Lyapunov exponential decays have
also been identifiedf30g.

The fidelity decay behavior of quantum analogs of non-
chaotic or quasi-integrable classical systems has received
less attentionf11,31,32g than its chaotic counterpart and has
been the subject of some controversyf33,34g. Using semi-
classical arguments, Prosenf11,34g demonstrated the coun-
terintuitive result that quantum fidelity decay of regular, non-
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chaotic, evolution is Gaussian, faster than the exponential
decay of chaotic systems. This was challenged by further
semiclassical argumentsf33g which indicated a power-law
decay. A proposed resolutionf31g differentiates between in-
dividual minimum uncertainty states, which generally exhibit
a Gaussian decay, and averages over many such states, which
may be biased by specific states exhibiting power-law fidel-
ity decay behavior.

In this work, we explore what causes a quantum state
undergoing regular quantum evolution to exhibit Gaussian or
power-law fidelity decay behavior. We present numerical re-
sults demonstrating that the behavior depends on the reaction
of the underlying classical phase space to the applied pertur-
bation. Building off classical fidelity decay resultsf35g, we
chart the regions of phase space containing states with initial
Gaussian or power-law decay. Within the two regions we
show that the exact rate of the Gaussian or power-law decay
is also a function of the coherent state position. In addition, a
connection is presented between fidelity decay behavior and
the spectrum of the initial state in the eigenbasis of the sys-
tem. Finally, we probe the dependence of the initial decay
behavior on perturbation strength and Hilbert space dimen-
sion, and note that, for strong perturbations, there exists a
transitional exponential fidelity decay behavior after initial
Gaussian decay and before fidelity saturation.

Perturbing classical Hamiltonian evolution can affect
phase space orbits in two general ways: the perturbation may
distort the shape of the orbit or change the frequency of the
orbit. Benenti, Casati, and VeblesBCVd f35g proposed that in
the limit of weak perturbations the classical fidelity decay
behavior is solely determined by the dominant perturbation
effect on the phase space orbits. If the dominant effect on a
specific orbit is to change its frequency, initial wave packets
centered in the region exhibit Gaussian decaysassuming
Gaussian wave packetsd. This is what would be expected
from the fidelity of two Gaussian wave packets moving in
antiparallel directions, or at different speeds, along a specific
path. If, however, the effect of the perturbation is to change
the shape of the Kolmogorov-Arnol’d-MosersKAM d torus,
states centered in the region will exhibit power-law fidelity
decay. BCV note that they expect similar results in the quan-
tum realm.

Here, we provide numerical evidence that the correspon-
dence between the perturbation’s effect on phase space and
fidelity decay behavior extends to quantum systems. Specifi-
cally, we show that quantum fidelity decay behavior depends
on whether an initial coherent state is centered on a phase
space orbit whose frequency is changed due to the perturba-
tion, in which case the decay will be Gaussian, or an orbit
whose shape is distorted by the perturbation, in which case
the decay will be power law. Fidelity decay simulations un-
der quantum kicked rotor evolution support a suspicion of
Ref. f35g that quantum states are more prone to Gaussian
decay due to the quantization of the phase space tori.

The quantum fidelity decay of an initial stateucil is given
by

Fstd = zkciuU−tUp
t ucilz2 s1d

whereU is the unperturbed evolution,Up=Ue−idV is the per-
turbed evolution,d is the perturbation strength, andV is the

perturbation Hamiltonian. Our numerical work is centered
around kicked maps with kick strengthk determining
whether the evolution is chaotic or regular. For the perturbed
evolution we employ the same map with a slightly different
kick strength. Thus, the unperturbed operator isU=Uskd, and
the perturbed operator isUp=Usk+dkd, with perturbation
strengthdk.

We begin our study of fidelity decay with the quantum
kicked topsQKTd f36g, a system used in many previous stud-
ies of quantum chaos in generalf1g and fidelity decay in
particular f3,8,11,13,31,33g. The classical kicked top de-
scribes dynamics on the surface of a sphere

xt+1 = zt,

yt+1 = xt sinskTzd + yt cosskTzd,

zt+1 = − xt cosskTzd + yt sinskTzd, s2d

wherekT is the kick strength. We choose a kick strength of
kT=1.1 corresponding to quasi-integrable dynamics. Thef-
u phase space of the classical kicked top is shown in Fig. 1
whereut=arccossztd and ft=arctansyt /xtd. The phase space
has a stable fixed point atsf=−p /2 ,u=p /2d surrounded by
KAM tori, and rotational KAM tori at theu edges. Another
stable fixed point is found atsf=0,u=p /2d encircled by a
smaller region of stable KAM tori.

Figure 1 illustrates the effect of changing the kick strength
on the classical kicked top phase space by plotting orbits of
two different perturbation strengths. The shapes of the rota-
tional orbits in the regions at theu edges of phase space and
of the tori around the central fixed point change significantly
while those around the fixed point atsf=−p /2 ,u=p /2d do
not. If correspondence holds between classical and quantum
fidelity decay, this observation should alert us as to the likely
fidelity behavior of coherent quantum states centered in these
phase space regions. A power-law decay is expected for
states centered in the former regions, and a Gaussian decay
for those centered in the latter region.

The quantum kicked topf36g is defined by the Floquet
operator

UQKT = e−ipJy/2e−ikTJz
2/2J, s3d

whereJ is the angular momentum of the top andJW are the
irreducible angular momentum operators. The Hilbert space
dimension of the top isN=2J+1. The representation is such
that Jz is diagonal. As initial states we use minimum uncer-
tainty angular momentum coherent states centered around
sfi ,uid f3g and employ a QKT ofJ=500 unless otherwise
noted.

For convenience we number the states assuming a 10
310 grid evenly spaced in theu andf directions as seen in
Fig. 1. The lines of the grid are numbered such that the
number of a state, centered at an intersection of the grid, is
determined by adding the numerical values of the horizontal
snumbers on leftd and verticalsnumbers on the bottomd lines.
State 1 is thus located atsf=−p /2 ,u=p /10d and state 100
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at sf=2p /5 ,u=pd. In this way, the fixed point atsf=
−p /2 ,u=p /2d is number 41 while the fixed point atsf
=0,u=p /2d is number 46.

Figure 2 shows that state 52, centered in the region of
phase space surrounding the fixed pointsf=−p /2 ,u=p /2d,
exhibits the expected Gaussian behaviorstrianglesd, and that
state 66, near the fixed pointsf=0,u=p /2d ssolid lined, ex-
hibits the expected power-law decay. These states parallel the
expected classical fidelity decay behavior.

The existence of states with power-law decay supports the
contentions of Ref.f31g in explaining contradictory results in
regular system fidelity decay behavior. These states bias the
average to look like a power law which is slower than the
exponential fidelity decay of chaotic systems. Many states,
however, exhibit Gaussian fidelity decay which may, under

certain circumstances, be faster than the decay of the corre-
sponding chaotic fidelity.

The parallel between the fidelity of quantum states and
their classical counterparts is not, however, the case in gen-
eral. Some states initially centered in areas of apparent phase
space orbit distortion exhibit the Gaussian fidelity decay ex-
pected from perturbations of an orbit’s frequency. We show
this in the quantum version of the system explored classi-
cally by BCV f35g, the kicked rotor. The classical dynamics
of the kicked rotor is given by

pt+1 = pt + skR/2pdsins2pqtd,

qt+1 = qt + pt+1, s4d

where kR is the rotor kick strength and −1/2,q,p,1/2.
For kR=0.3 the phase space of the kicked rotor has a stable
fixed point atsq=−0.5,p=0d s3d and an unstable fixed point

FIG. 1. sColor onlined Twenty-five classical orbits on the phase
space of the classical kicked top,kT=1.1 sdarkd, andkT=1.3 slightd.
The same initial points are used to map the orbits so as to demon-
strate the effect of thedT perturbation. The change of kick strength
primarily affects the frequency of the orbits around the stable point
at sf=−p /2 ,u=p /2d s3d. Thus, under adT perturbation, we ex-
pect coherent states placed there to exhibit a Gaussian fidelity de-
cay. The change of kick strength does affect the shape of the central
tori around thesf=0,u=p /2d s3d fixed point. Thus, under thedT

perturbation we expect coherent states centered in that region to
exhibit a power-law fidelity decay. The same holds for the rotational
tori at the edges of the phase space. The different markers delineate
the fidelity decay behavior of coherent states centered at those
points. The states marked by circles, up, down, left, and right point-
ing triangles, five-pointed stars, and six-pointed stars mark states
that exhibit Gaussian decay behavior at different rates. While we
offer no clear,a priori, determination of the decay rate, states cen-
tered on the same orbit tend to decay at similar rates. Though dif-
ferent orbits may also give rise to similar decay rates, the general
trend is toward a slower Gaussian as the states move further from
the sf=−p /2 ,u=p /2d fixed point. Power-law fidelity decay rates
depend on distance from areas with large tori distortions, the region
surrounding the central fixed point and the dip in the rotational
torus at the top and bottom of the figure. The closer a state is to
these regions, the slower the power-law rate. Gaussian and power-
law fidelity decays are shown in Fig. 2 where the shapes correspond
to the markers used in this figure.

FIG. 2. sColor onlined Fidelity decay for quantum kicked top
with kT=1.1, dT=0.001, andJ=500, of two different coherent
states. Onestrianglesd placed in the region of stable KAM tori sur-
rounding the fixed pointsf=−p /2 ,u=p /2d sstate 52, up triangle in
Fig. 1, every 20 steps shownd where the perturbation effects a
change in phase space orbit frequency, and the otherssolid lined
placed in the region surrounding thesf=0,u=p /2d stable point
sstate 56, diamond in Fig. 1d where the perturbation causes a dis-
tortion of the phase space orbit. As expected, the former displays a
Gaussian fidelity decaysdashed lined e−GGt2, with GG=4.5310−6,
while the latter exhibits a power-law decaycPt−aP sdash-dotted lined
with aP=1.15 andcP=950. The insets show the change of fidelity
decay rate as a function of perturbation strength,dT. The top inset
plots dT versuscP for states that decay as proportional tot−1 s1d,
t−1.15 sdiamondd, andt−1.3 spd sas explained later, different coherent
states decay with different power lawsd. The points on the log-log
plot are well fitted bycP=0.85dT

−1 sdotted lined, 0.35dT
−1.15 sdashed

lined and 0.85dT
−1.3 sdash-dotted lined. From these and numerical

results of other states we assume the following form for power-law
decay:FPstd=csdtd−aP. The lower inset shows the change of the
Gaussian rateGG as a function ofdT smarked by shapes correspond-
ing to those in Fig. 1d. As addressed below, coherent states centered
in different areas of phase space exhibit different Gaussian decay
rates, with the rate slowing as the states move further from the
stable point. The dependence of the rate on perturbation strength,
however, is alwaysGG~dT

2 sdotted lined.
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at sq=0,p=0d s1d. The phase space is divided into two dis-
tinct regions, orbits around the stable fixed point, and rota-
tional motion, as shown in Fig. 3. The orbit at the border
between these regions is the separatrix. As with the QKT we
plot phase space orbits of differentkR to demonstrate the
effect of a change of kick strength perturbation on different
parts of the classical phase space. The shapes of certain
KAM tori, such as the ones just outside the separatrix, ex-
hibit large deformations, while others, such as the inner
circles within the separatrix, do not. As shown inf35g, states
in the former region exhibit Gaussian classical fidelity decay
while those in the latter region exhibit power-law decay.

To study quantum fidelity decay of the kicked rotor, we
use the unitary operator describing the quantum kicked rotor
sQKRd f32g

UQKR= e−ip2pNe−ikR coss2pqdN/p, s5d

whereN is the Hilbert space dimension. For our simulations
we use QKRs ofN=500,1000,kR=0.3, corresponding to a
classical kicked rotor with nonchaotic dynamics, and pertur-
bation strengthsdR=0.002,0.0014. As initial states we use
the minimum uncertainty coherent states described inf37g
centered aroundsqi ,pid.

Figure 4 shows the fidelity decay of quantum coherent
states centered in different regions of phase space. One
ssquaresd in a phase space region where the effect ofdR is
primarily to change the frequency of the KAM torisq=
−0.4,p=0.1d ssquare in Fig. 3d, and anotherssolid lined in a
phase space region wheredR primarily distorts the shape of

the KAM tori sq=−0.1,p=0.1d sdiamond in Fig. 3d. The
former exhibits a Gaussian fidelity decay while the latter
exhibits a decay which is non-Gaussian and resemblessbut is
not quited a power law. An exact power law does not emerge
for any of the states simulated for the QKR even for pertur-
bation strengths as low asdR=0.0005. Figure 4 also shows a
statesq=−0.1,p=−0.4d, centered on a rotational orbit out-
side the separatrix which, despite the classical prediction of a
power-law fidelity decay, exhibits Gaussian decaystriangle
in Fig. 3d.

As mentioned above, BCVf35g predict a lack of corre-
spondence between classical and quantum fidelity decay, not-

FIG. 3. sColor onlined Thirty orbits on the phase space of the
classical kicked rotorskR=0.3 sdarkd andkR=0.35slightd. The same
initial points are used to plot the orbits of both maps in order to
highlight the effect of adR perturbation. Well within the separatrix,
the effect of thedR perturbation is generally to change the fre-
quency of the KAM tori. Outside the separatrix, however, thedR

perturbation essentially changes the shape of the tori. Also shown
are the stable,sq=−0.5,p=0d s3d and unstablesq=0,p=0d s1d
fixed points and states used in the text to demonstrate Gaussian
ssquared and non-Gaussianscircle, diamondd fidelity decay. Classi-
cally, states outside the separatrix are expected to exhibit power-law
fidelity decay. In the quantum realm, however, we find that many
such states exhibit Gaussian decay, an example of which is marked
by the triangle.

FIG. 4. sColor onlined Log-log and log-linear plots of three co-
herent state fidelity decay behaviors under evolution of the quantum
kicked rotor withkR=0.3,dR=0.002, andN=500. One of the states
is centered inside the separatrix atsq=−0.4,p=0.1d ssquares every
50 time stepsd, where there is no apparent distortion of KAM tori.
The location of this state on the classical phase space is marked by
a square in Fig. 3. Another state is centered outside the separatrix
sq=−0.1,p=0.1d ssolid line, diamond in Fig. 3d where there is no-
ticeable KAM tori distortion due to the perturbation. The former
displays a Gaussian fidelity decaysdashed lined e−0.0006t2 and exhib-
its fidelity recurrences every 2300 time stepsf32g. The latter exhib-
its a decay which is non-Gaussian. A power law proportional tot−1

sdash-dotted lined is plotted for comparison. The third statestri-
angled is centered outside the separatrixstriangle in Fig. 3d but
nonetheless exhibits a Gaussian decayFstd=e−5310−7t2. This state
does not exhibit fidelity decay recurrences.
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ing that the quantization of KAM tori tends to suppress tran-
sitions between them. This would enforce a change of
frequency as the primary effect of the perturbation. The lack
of an actual power-law decay at any point in the QKR orbits
implies such a suppression throughout the region of rota-
tional motion. Lack of correspondence to classical dynamics
for rotational QKR orbits has also been noted with respect to
fidelity recurrencesf32g. Fidelity recurrences, as seen in Fig.
4, are predicted classically in all regions of phase space. Yet,
in the quantum realm, they do not occur in the QKR rota-
tional tori. Referencef32g notes that these regions have a
high density of states and the enhanced quantum interference
may cause the lack of classical correspondence. A similar
argument can be proposed here, as enhanced quantum inter-
ference may be especially sensitive to perturbations and
cause the fast Gaussian fidelity decay.

In an attempt to further understand what differentiates
states that exhibit Gaussian fidelity decay from those that
exhibit power-law decay we look at the spectra of the initial
coherent states with respect to the QKT eigenbasis as a func-
tion of the extent of the eigenstates inJz. Following Peresf3g
the extent of a state with respect to the operatorJz is defined
as

DuJzu = ÎkcuJz
2ucl − ukcuJzuclu2. s6d

The extent is related to the coefficient of the quadratic term
in the power series expansion of the fidelityf2g. Thus, we
expect it to provide insight into the expected fidelity decay
behavior. We calculate the extent of all the eigenstates of the
QKT and see how much each of these states contributes to a
given coherent state. The contribution is quantified by an
amplitudeAj = zkci uf jlz2 whereci is the initial coherent state
andf j is the j th QKT eigenstate.

On the extremes, the coherent state centered at the stable
fixed point sf=−p /2 ,u=p /2d is primarily sA=0.95d com-
posed of one eigenstate withDuJzu=17.3. The primary con-
tributors to the coherent state centered at the stable fixed
point atsf=0,u=p /2d are four eigenstates each with ampli-
tudes of 0.21 andDuJzu=353.7. In both cases the fidelity
barely decays as the state exists in a constricted Hilbert space
f3,11,18g.

Most coherent states, however, have significant contribu-
tions from many different eigenstates. In Fig. 5 the contribu-
tion to coherent states 52–56 is plotted versus the extent of
the eigenstates and in the inset the same is plotted for states
64–67. The general pattern emerging from the figuresand
from states not shownd is clear. Coherent states exhibiting
Gaussian fidelity decay have a Gaussian spectrum of contri-
butions from eigenstates with low- to middle-range extents
in Jz. As the coherent states move away from the low-extent
sf=−p /2 ,u=p /2d fixed pointswith distance determined by
the number of passing trajectoriesd more and more states
contribute and with lower amplitudes, higher extent, and a
more localized extent range. The Gaussian shape remains
until the coherent states enter the region of power-law fidel-
ity decay. States with power-law fidelity decay have very
narrow spectra at high extent. The difference between the
types of states is clearly seen in Fig. 5 and the transition

between the types of states can be seen in Fig. 7 below.
We suggest that the relationship between fidelity decay

and the extent spectrum may be understood as follows.
States exhibiting power-law decay have a large extent in the
direction of the perturbation,Jz. When the coherent state is
perturbed these states cannot spread out much more in the
perturbation direction. Rather, they interfere with each other
and the decay is slow. Coherent states exhibiting Gaussian
decay, however, are spread out in extent space. The pertur-
bation affects each of these states differently, spreading them
out in Jz and causing a ballistic decay. As the coherent states
move away from the low-extent fixed point the average ex-
tent of these states grows and the Gaussian fidelity decay
gets slower until the transition to power-law decay. This de-
scription holds for states in the Gaussian and power-law fi-
delity decay regions for the QKT phase space. States at the
border between these regions and states very close to the
fixed points have different extent spectra and, thus, exhibit
fidelity decay behavior that is neither Gaussian nor power
law. These regions will be discussed below.

A full exploration of the extent and its relation to fidelity
decay is beyond the scope of this paper. However, looking at
the spectrum of a coherent state as a function of the extent of
the contributing basis states with respect to the perturbation
operatorV sor some function thereofd can help identify the
regions of different decay behaviors.

We now embark on a more extensive exploration of co-
herent state fidelity decay behavior in the regular regime of
the QKT. With this aim, we have calculated the fidelity decay
for coherent states spaced throughout the classical phase
space for a number of perturbation strengths and Hilbert
space dimensions. A large variety of behaviors exist, though
we concentrate only on the initial decay before any fidelity
recurrences. In an attempt to organize the data in a straight-

FIG. 5. sColor onlined Contribution of QKT eigenstates for co-
herent states 52–56sleft to rightd versus extent of those eigenstates
in Jz with shapes as in Fig. 1. As the states move further from the
low-extent sf=−p /2 ,u=p /2d fixed point more eigenstates have
significant contributions and the height of the Gaussian contribution
curve decreases. Consequently, the Gaussian fidelity decay rate de-
creases. State 56, made of only high-extent states, does not have a
Gaussian extent spectrum and exhibits power-law fidelity decay.
The inset shows coherent states 64–67sleft to rightd which follow a
similar pattern.
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forward fashion we explore fidelity decay as it relates to the
following variables: perturbation strength, Hilbert space di-
mension, and position of the initial state with respect to the
underlying classical phase space. We also study hitherto un-
observed exponential decay which may occur after an initial
Gaussian decay and explore how this decay regime behaves
with respect to the above variables. We note that an extensive
semiclassical treatment of regular fidelity decay has been
done in Ref.f11g. Our purpose here is to outline an approach
based on knowledge of the system’s classical phase space.

We first address the dependence of the fidelity decay rate
as a function of perturbation strength. For coherent states
exhibiting a Gaussian fidelity decay,FGstd=e−GGt2, numerical
simulations verifyGG~dT

2, as derived inf11g. This depen-
dence is demonstrated in the lower inset of Fig. 2 fordT
=0.0001,0.0005,0.001,0.005,0.01, andJ=500. For coher-
ent states exhibiting a power-law decayFPstd=cPt−aP, nu-
merical results for the above perturbation strengths suggest
that cP is proportional todT

−aP, from which we conclude
FPstd=csdTtd−aP. The upper inset in Fig. 2 demonstrates this
behavior with states whose power-law decay rate isaP=1,
1.15, and 1.3.

To address the fidelity decay behavior as a function of
Hilbert space dimension we choose one perturbation strength
dT=0.005 forJ=100,200,300,400,500. The fidelity decay
is calculated for coherent states of appropriate dimension
centered at specified points in phase space. For states cen-
tered in regions of Gaussian fidelity decay we find a linear
relation betweenJ and GG, as shown in the inset of Fig. 6,
the slope of which depends on the coherent state’s location in
phase space.

We can thus write the following equation for the Gaussian
fidelity decay behavior:

FGstd = e−GGt2, GG = gGJd2 s7d

wheregG depends only on the initial coherent state’s location

in phase space and is the only term nota priori calculable
from our analysis. This result is in consonance with the semi-
classical approach outlined inf11g.

For coherent states in regions of power-law fidelity decay,
we find no change in decay rate withJ as long as the fidelity
decay remains a power law. Thus we write the following
equation for the power-law decay behavior:

FPstd = csdTtd−aP s8d

where c and aP depend on the coherent state’s location.
However, asJ is decreased the fidelity decay behavior does
change; it shifts from power law to Gaussian, as shown in
Fig. 6 sfor state 56, marked diamond in Fig. 1d. This shift is
due to the increasing size of the initial coherent state making
it more likely that the states will overlap with KAM tori on
whom the perturbation effects a change of frequency. Coher-
ent states centered more deeply in the power law decay re-
gion ssuch as state 77 marked plus in Fig. 1d have a slower
transition to Gaussian decay when decreasingJ.

As we have seen, the fidelity decay behavior in general,
and the rates ofFGstd and FPstd specifically, are dependent
on the exact location of the initial coherent state with respect
to the underlying classical phase space. This dependence is
emphasized in Fig. 1 by using different shapes to mark the
centers of coherent states exhibiting Gaussianscircle, square,
up, down, left, and right triangles, five-pointed star, and six-
pointed stard and power-lawsdiamond,1, dot, pd fidelity
decay. States with practically equivalent decay rates are rep-
resented by the same shape, with the rates themselves shown
in Fig. 2. Based on our simulations we cannot formulate
clear-cut rules for the decay rate of a given coherent state.
However, we make two observations. First, states along the
same phase space orbit tend to have similar decay rates. Sec-
ond, GG, the rate of Gaussian decay, decreases as the states
get further from thesf=−p /2 ,u=p /2d fixed point swith
distance measured by the number of trajectories between the
fixed point and the center of the coherent stated. We have
already seen consequences of this latter observation in the
extent spectra. Similarly, for states exhibiting power-law de-
cay behavior, the power increases as the states get further
from regions of large KAM torus distortion.

We now explore the fidelity decay of states at the border
between the Gaussian and power-law phase-space regions
and of states close to the fixed points. These regions exhibit
a variety of decay behaviors which are reflected in the extent
spectrum. Looking at the transition from Gaussian to power-
law decay away from the fixed points we note that the tran-
sition is a rather smooth one in both the decay behavior itself
and the extent of the contributing eigenstates. Figure 7 dis-
plays these behaviors for coherent statesu=4p /5 and f
ranging from 0 top /10 sbetween states 76 and 77 of Fig. 1d.
For the fidelity, the decay slows as the state leaves the region
where the dominant perturbation effect is on the frequency of
the orbits and enters the region where the dominant pertur-
bation effect is on the shape of the orbits. In the extent spec-
tra the transition is manifest by the Gaussian shape narrow-
ing on the side of large extent, eventually becoming almost
flat except for a tail reaching toward the higher-extent eigen-
states. Similar behavior is found for other states in the border

FIG. 6. sColor onlined Coherent state 56sdiamond in Fig. 1d
fidelity decaysevery 16th time step plottedd for the QKT with kT

=1.1,dT=0.005, andJ=500scirclesd, 300ssquaresd, and 100sdotsd.
Lowering J causes the fidelity decay behavior to transition from
power law to Gaussian. The inset shows the rate of Gaussian fidel-
ity decayGG as a function ofJ for some coherent states. We find a
linear relationshipGG=cGJ with cG=2.3310−7, 5.5310−7, 6.7
310−7, and 1310−6 sbottom to topd shown.
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region between Gaussian and power-law fidelity decay.
The region surrounding thesf=0,u=p /2d fixed point

contains states exhibiting fidelity decay behaviors not de-
scribed by a Gaussian or power law and extent spectra dif-
ferent from those seen above. Starting with the coherent state
centered at the fixed point, the fidelity oscillates close to one
as the coherent state is comprised almost entirely of the
highest-extent QKT eigenstates. As the coherent states move
away from the fixed point the highest-extent eigenstates still
give the largest contributions while the next-highest-extent
eigenstates give increased contributions. The fidelity decay
in these regions starts off as a power law but exhibits a
second stage of Gaussian decay similar to edge of quantum
chaos decaysf21g. Moving further, eigenstates with lower
and lower extent become dominant. However, the extent
spectrum is not Gaussian, as would be expected for states
exhibiting Gaussian fidelity decay, but is extended on the
side of lower extent eigenstates. At this increased distance
from the fixed point, the first-stage fidelity decay transitions
from power law to Gaussian, and the second-stage decay
transitions from Gaussian to power-law decay. Finally, the
initial Gaussian fidelity decay flattens into one stage of
power-law decay while the extent spectrum continues flat-
tening in the direction of higher-extent states while forming a
complicated flattened bulge at lower-extent states. All of
these behaviors are exhibited in Fig. 8. Similar behavior is
found in regions of coherent states 3–5 and 87–89.

Coherent states in the region surrounding the fixed point
at sf=−p /2 ,u=p /2d exhibit behavior that is slightly differ-
ent from the states in the region surrounding thesf=0,u
=p /2d fixed state. At the fixed point the fidelity simply os-
cillates close to 1. As the coherent states move away from
the fixed point the oscillations become larger in amplitude,

FIG. 7. sColor onlined Fidelity decay of coherent states withu
=4p /5 andf ranging from 0sstate 76d andp /10 sstate 77d for the
QKT with kT=1.1, dT=0.001. The states shown are forf=p /100,
3p /100, 5p /100, 6p /100, 7p /100, and 9p /100 sbottom to topd.
The decay can be seen to transition smoothly from Gaussian to
power law. The inset shows the extent spectrum of the states atf
=3p /100 scirclesd, 6p /100 sdiamondsd, and 9p /100 s3d. As the
power-law fidelity decay region is approached, the Gaussian spec-
trum gets filled in and narrows on the side of higher extent, becom-
ing almost flat except for a tail of high-extent states.

FIG. 8. sColor onlined The top panel shows the fidelity decay of
coherent states withu ranging fromp /2 to 6p /10 andf=0 for the
QKT with kT=1.1, dT=0.001. The states shown are foru=p /2+0,
p /100, 2p /100, 3p /100, 4p /100, and 5p /100 stop to bottomd.
Close to the fixed point the fidelity oscillates close to 1. As the
states move further away from the fixed point, the fidelity decays in
two stages, starting as a power law and becoming a Gaussian. For
comparison we fit the initial decay of theu=p /2+2p /100 state
with a power law proportional tot−1 sdotted lined, the u=p /2
+3p /100 state initial decay with a power law proportional tot−1.7

sdashed lined, and the second-stage decay with a Gaussiane−Gsst
2

with Gss=8310−8 schained lined. Moving further away, the initial
power law becomes more Gaussian while the second stage starts
flattening to power law. The inset shows every 60 steps of the
fidelity decay for the statesf=0, u=p /2+6p /10 strianglesd,
7p /100 sdiamondsd, 8p /100 s1d, 9p /100 s3d, andp /10 sstate 56,
squaresd. Here, the initial decay starts off as Gaussian and rebounds
into a power-law decay. For comparison we plot the Gaussiane−GGt2

with GG=3.9310−6 schained lined and the power law proportional
to t−1.05 ssolid lined. As the states continue to move away from the
fixed point, however, the Gaussian flattens until there is a single-
behavior power-law decay, proportional tot−1.15 sdashed lined. The
bottom panel shows the extent spectrum of the states withu=p /2
+5p /10 ssd, 6p /10 strianglesd, 7p /10 sdiamondsd, 9p /10 s3d,
and state 56ssquaresd. As the coherent states are moved further
away from the fixed point the spectra flatten at higher-extent eigen-
states and a bulge grows at lower-extent eigenstates.
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the recurrence time increases, the initial decay becomes more
Gaussian, and the maximum fidelity reached on the recur-
rence is lower. This continues until full Gaussian decay be-
havior emerges. The extent spectra reflect this behavior, go-
ing from a dominant low-extent state to an eventual Gaussian
shape.

We also note the presence of states with unexpected fidel-
ity decay behavior in the QKR. Figure 9 shows examples of
N=1000 coherent states under QKRkR=0.3, dR=0.0014
evolution that exhibit initial exponential fidelity decaystop
plotd, though the QKR is regular, and fidelity “freeze” as
discussed in Ref.f31g, though the perturbation is nonergodic.

Beyond the initial Gaussian fidelity decay of some coher-
ent states, there may exist a second, slower, stage of expo-
nential fidelity decay behavior,Fstd=cEe−bE, before satura-
tion. This stage is prevalent for strong perturbations but
disappears for smaller perturbationssor smaller Hilbert space
dimension with the same perturbation strengthd. The specif-
ics of this exponential decay depend strongly on the phase
space location of the initial coherent state. The slower expo-
nential decay of this second stage gives rise to an exciting
phenomenon: a stronger perturbation leading to a higher fi-
delity than a weaker perturbation of the same type.

The golden rule exponential fidelity decay term men-
tioned above for chaotic systems exists also in regular sys-
temsf33g. We do not identify this term with the exponential
observed here since, as we show, the exponential here is
strongly dependent on the initial state.

As with the initial fidelity decay behavior we attempt a
systematic numerical analysis of the second-stage exponen-
tial decay. We first study the exponential as a function of
perturbation and then explore the effect of the location of the
initial coherent state.

Figure 10 demonstrates that weaker perturbationss1,sd
exhibit no exponential fidelity decay stage. Rather, the

Gaussian decay continues until fidelity saturation. As the per-
turbation strengthens the second-stage exponential emerges.
In addition, there exists a transition period between the two
decay behaviors. Thus, weaker perturbations lead to longer
times of Gaussian fidelity decay during which the fidelity of
stronger perturbations may have already transferred to the
slower exponential. In this way, there may be a significant
amount of time in which the fidelity of the stronger pertur-
bation sdiamonds, trianglesd is actually higher than that of
the weaker perturbationssquares,1d. This phenomenon is
shown in Fig. 10 for thekT=1.1,J=500 QKT. An exponen-
tial region of decay is manifest for perturbation strengths
dT=0.01, 0.0075, and 0.005, but not for weaker perturbations
dT=0.0025 and 0.001. Thus, for timest.300 the fidelity of
at least one of the stronger perturbations is higher than the
fidelity of a weaker perturbation.

The rate of the exponential also depends on the perturba-
tion strengthdT. However, our numerical simulations do not
show any simple relationship between the exponential rate
and the perturbation strength. Rather, the rate changes dras-
tically ranging from practically zero, decay freeze, to a fast
exponential. This also allows a stronger perturbation to have
a higher fidelity than a weaker one. This is exemplified in
Fig. 10 by thed=0.0075 perturbation whose fidelity decays
very slowly and, thus, after a time, is higher than the fidelity
of all of the weaker perturbations.

FIG. 9. sColor onlined The upper plot shows two coherent states
evolved under theN=1000,kR=0.3 QKR withdR=0.0014 that ex-
hibit initial exponential decay despite the fact that the QKR is in the
regular regime. The lower plot shows three coherent states under
the same QKR evolution which exhibit initial Gaussian decay that
transitions to exponential decay. For two of the states the fidelity
freezes after the initial Gaussian decay. The fidelity of all three
states exhibits echo resonances similar to those discussed in Ref.
f31g for ergodic perturbations.

FIG. 10. sColor onlined Coherent state 54scircle in Fig. 1d fi-
delity decaysevery fifth time step plottedd for the QKT with kT

=1.1 and J=500, for perturbation strengthsdT=0.01 ssquaresd,
0.0075sdiamondsd, 0.005 strianglesd, 0.0025s1d, and 0.001ssd.
The fidelity decay of the stronger perturbations shows a stage of
exponential decay after the initial Gaussian. This stage is fitted by
Fstd=12e−0.035t sdash-dotted lined for dT=0.01, Fstd
=0.025e−0.00115t ssolid lined for dT=0.0075, andFstd=7e−0.052t

sdashed lined for dT=0.005. For the strongest perturbationsdT

=0.01, 0.0075, there is also a period of transfer between the two
fidelity decay regimes, while ford=0.005 this transition period is
nonexistent. For weaker perturbations the exponential stage of fi-
delity decay disappears altogether. The faster Gaussian decay of the
weaker perturbations and the wide range of exponential decay rates
lead to the counterintuitive result that a stronger perturbation leads
to a higher fidelity as seen in the region 200, t,600 for thedT

=0.01 decay and across the whole plotted region for thedT

=0.0075 decay. There is no clear correlation between perturbation
strength and exponential decay rate.
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The possibility of a stronger perturbation leading to a
higher fidelity may have important consequences for quan-
tum simulations in which a quantum system is trying to
simulate a given dynamics: a strong error in the dynamics
may be easier to correct via quantum error correction than a
weak one. This could allow for an interesting error-
correction scenario. A weak error strongly affecting a system
should be purposelystrengthenedso as to more accurately
perform the desired simulation. This would be especially sig-
nificant in a case where the effect of the error is too strong
for conventional quantum error techniques but can be
brought below the error-correction threshold if the error is
strengthened.

The existence of the exponential fidelity decay region
may be related to the quantum freeze of fidelity discussed in
f31g for ergodic perturbations. In fact, the lower plot of Fig.
9 displays the fidelity decay of coherent states evolved by the
QKR which actually freeze, though the applied perturbation
is nonergodic.

The region of exponential fidelity decay varies dramati-
cally with the location of the coherent state on the underlying
classical phase space. This is displayed in Fig. 11 where a
wide range of exponential decay rates are found for different
coherent states though they undergo equivalent evolution. In
addition, the time of the transition period from Gaussian to
exponential varies from state to state.

In conclusion, we have provided a numerical study of
fidelity decay behavior for coherent states in a quantum sys-
tem whose classical analog is quasi-integrable. We find that
the initial fidelity decay behavior and rate will depend on the
perturbation strength, Hilbert space dimension, and initial
coherent state location. The quantum fidelity decay behavior
generally corresponds to the classical fidelity decay explored
in f35g and the prediction therein: quantum states tend more
toward Gaussian decay due to the quantization of the phase
space orbits. In addition, we show that the spectrum of the
initial coherent state with respect to the system eigenstate
extent contains information regarding the fidelity decay of
that state. Finally, we find that after initial Gaussian decay
behavior, there may be a second stage of exponential decay
for strong perturbations. The rate and inception of the expo-
nential decay depend on the perturbation strength and loca-

tion of the coherent state. The existence of this second-stage
decay behavior leads to the counterintuitive result that stron-
ger perturbations may lead to higher fidelity, a phenomenon
which may be important for quantum computation.
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