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Quantum fidelity decay in quasi-integrable systems
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We show, via numerical simulations, that the fidelity decay behavior of quasi-integrable systems is strongly
dependent on the location of the initial coherent state with respect to the underlying classical phase space. In
parallel to classical fidelity, the quantum fidelity generally exhibits Gaussian decay when the perturbation
affects the frequency of periodic phase space orbits and power-law decay when the perturbation changes the
shape of the orbits. For both behaviors the decay rate also depends on initial state location. The spectrum of the
initial states in the eigenbasis of the system reflects the different fidelity decay behaviors. In addition, states
with initial Gaussian decay exhibit a stage of exponential decay for strong perturbations. This elicits a surpris-
ing phenomenon: a strong perturbation can induce a higher fidelity than a weak perturbation of the same type.
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Manifestations of chaos and complexity in the quantumby the analogous classical system’s Lyapunov exponent.
realm have been widely explored in connection with the cor- The identification of a classically chaotic signature in
respondence principle between classical and quantum meuantum systems has led to detailed studies of fidelity decay
chanicg1]. An example is a system'’s response to small perbehavior. For quantum systems that are analogs of classically
turbations of its Hamiltonian. Perd®,3] conjectured that chaotic systems, a number of regimes have been identified
this response serves as an indicator of chaos applicable tiased on perturbation strength. For weak perturbations, such
both the classical and quantum realms. That is, in bottihat perturbation theory is valid, the fidelity decay is Gauss-
realms the behavior of fidelity between a state evolved undeian [2,8,10. For stronger perturbations, in the Fermi golden
perturbed and unperturbed dynamics depends on whether B#le regime, the fidelity decays exponentially with a rate de-
not the dynamics is chaotic. termined by the perturbation Hamiltonian and perturbation

Peres’ conjecture found an experimental venue in nuclea?t€ngth[7,8,11-13. In many systems the rate of the expo-
magnetic resonand&MR) polarization echoes. In these ex- nential increases as the square of the perturbation strength

periments the initial state of the system is evolved forward8] (Se€l[14] for an exceptional caseuntil saturating at the
underlying classical systems’ Lyapunov expongh8] or at

under its internal dipolar Hamiltonian and then inverted by a . e
: : . he bandwidth of the Hamiltoniaf8]. The crossover be-
sequence of radio-frequency pulsdg The inverted Hamil- tween the various regimg¢45-17 and the fidelity saturation

:onlarlw,Hhovv_iatver, W'g betnot tie an exafct rtgversal gf.tttwe "Jevel [18,19 have also been explored. Quantum fidelity de-
eérnal Fiamiftonian dué 1o puise impertections and Interacsay gimy|ations have also been carried out in weakly chaotic
tions with the environment. These perturbations reduce th

: =% C€ N€ystemq20], and at the edge of quantum chdas].
subsequent echo amplitude which is the measure of fidelity. Relationships between fidelity decay behavior and other

~ The polarization echo as a means of studying dynamica}yantum phenomena are also found in the literature. These
irreversibility was applied in Ref[5], where it was noted include the Fourier transform relation between fidelity decay
that the echo decay behavior as a function of time can bgnd the local density of statd8,27], issues of classical-
exponential or Gaussian, depending on the molecule Und‘%fuantum correspondeng@3], reversibility [24], and deco-
investigation. The connection between these results and th@srencq25]. We also note that fidelity decay studies can be
exponential fidelity decay predicted for systems exhibitingcarried out on a quantum computgt3,26, and that the
quantum chaog3] was made in Ref.6]. fidelity has been experimentally determined for a three-qubit
Encouraged by these experimental investigations, \]alabeﬁhantum baker’s map on a NMR quantum information pro_
and PastawsKi7] applied semiclassical analysis to the evo-cessof27].
lution of what they termed the Loschmidt echo, or fidelity  studies of fidelity decay in quantum systems have spurred
decay. Their analysis showed that for chaotic systems, Whejaterest in the fidelity decay of classical syste[@8]. For
the perturbation is strong enough such that perturbatioghaotic classical systems it has been shown that the
theory fails, the fidelity decay is comprised of two exponen-asymptotic fidelity decay can be either exponential or power
tially decaying terms. The first of these terms is dominant fofjaw, analogous to the asymptotic decay of correlation func-
small errors and can be described by the Fermi golden rulgons [29]. Faster than Lyapunov exponential decays have
[8,9]. The second term is dominant for strong errors, inde4|so been identifie@30].
pendent of perturbation strength, and decays at a rate given The fidelity decay behavior of quantum analogs of non-
chaotic or quasi-integrable classical systems has received
less attentiorf11,31,32 than its chaotic counterpart and has
* Author to whom correspondence should be addressed. Electronteeen the subject of some controvef$§8,34]. Using semi-
address: weinstei@dave.nrl.navy.mil classical arguments, Prosghl,34 demonstrated the coun-
"Electronic address: hellberg@dave.nrl.navy.mil terintuitive result that quantum fidelity decay of regular, non-
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chaotic, evolution is Gaussian, faster than the exponentiglerturbation Hamiltonian. Our numerical work is centered
decay of chaotic systems. This was challenged by furthearound kicked maps with kick strengtk determining
semiclassical argumen{83] which indicated a power-law whether the evolution is chaotic or regular. For the perturbed
decay. A proposed resolutid81] differentiates between in- evolution we employ the same map with a slightly different
dividual minimum uncertainty states, which generally exhibitkick strength. Thus, the unperturbed operatdy isU(k), and

a Gaussian decay, and averages over many such states, Whigl perturbed operator i,=U(k+4,), with perturbation
may be biased by specific states exhibiting power-law f'de"strength Se

ity I?re(t:r?i)é k:/\?:r?(\/i(xe explore what causes a quantum statg, We begin our study of fidelity decay with the quantum
undergoing regular quantum evolution to exhibit Gaussian or icked top(QKT) [36], a system used in many previous stud-

power-law fidelity decay behavior. We present numerical re-o> of quantum chaos in generd] and fidelity decay in

sults demonstrating that the behavior depends on the reacti(ﬂ‘ﬁir.tti)cuIadr [3’8’.11’13’3%]’3]3 Tfhe cle;ssicalh kicked top de-
of the underlying classical phase space to the applied perturc'P€s dynamics on the surface of a sphere
bation. Building off classical fidelity decay result35], we

chart the regions of phase space containing states with initial X1 = 4
Gaussian or power-law decay. Within the two regions we
show that the exact rate of the Gaussian or power-law decay Yie1 = % Sin(ky2) +y; cogkr2),

is also a function of the coherent state position. In addition, a
connection is presented between fidelity decay behavior and .
the spectrum of the initial state in the eigenbasis of the sys- Z41= ~ X% C0ogks2) + Y sin(kr2), ()
tem. Finally, we probe the dependence of the initial decaXN

behavior on perturbation strength and Hilbert space dimenR h_elrelkz(ljs;rtehse glrlcclanstrteggtSég/i\_/ﬁ‘tf;h?gzizk:]ﬂ(msi»ggn%;he of
sion, and note that, for strong perturbations, there exists @' P groq 9 y ’

transitional exponential fidelity decay behavior after initial o phase_space of the clas_3|cal kicked top is shown in Fig. 1
Gaussian decay and before fidelity saturation. where Ht—arcc0$zt) af‘d ¢ =arctarty,/x). The phase space
Perturbing classical Hamiltonian evolution can affectNas a stable fixed point &p=-m/2,6=/2) surrounded by

phase space orbits in two general ways: the perturbation m?AM tor I, and FOta.“O”a' KAM tori at thed edg?S- Another
distort the shape of the orbit or change the frequency of th&'@Ple fixed point is found dp=0,0=m/2) encircled by a
orbit. Benenti, Casati, and VebiBCV) [35] proposed thatin Smaller region of stable KAM tori. _ ,
the limit of weak perturbations the classical fidelity decay Figure 1illustrates the effect of changing the kick strength
behavior is solely determined by the dominant perturbatiorPn the classical kicked top phase space by plotting orbits of
effect on the phase space orbits. If the dominant effect on VO different perturbation strengths. The shapes of the rota-
specific orbit is to change its frequency, initial wave packetdional orbits in the regions at theéedges of phase space and
centered in the region exhibit Gaussian dedagsuming of t_he tori around the central flxed point change significantly
Gaussian wave packetsThis is what would be expected While those around the fixed point @p=-m/2,0=/2) do
from the fidelity of two Gaussian wave packets moving in "ot _If correspondence holds between classical and quantum
antiparallel directions, or at different speeds, along a specififidelity decay, this observation should alert us as to the likely
path. If, however, the effect of the perturbation is to Chamﬁ:lé‘rdelrty behavior of_ coherent quantum states centered in these
the shape of the Kolmogorov-Arnol'd-Mos€KAM ) torus, phase space regions. A power-l_aw decay is expected for
states centered in the region will exhibit power-law fidelity States centered in the former regions, and a Gaussian decay
decay. BCV note that they expect similar results in the quanfor those centered in the latter region.
tum realm. The quantum kicked top36] is defined by the Floquet
Here, we provide numerical evidence that the correspon@Perator
dence between the perturbation’s effect on phase space and , o,
fidelity decay behavior extends to quantum systems. Specifi- Uqir= &7 ™y2gkrlz/2), 3
cally, we show that quantum fidelity decay behavior depends .
on whether an initial coherent state is centered on a phasghereJ is the angular momentum of the top addare the
space orbit whose frequency is changed due to the perturbareducible angular momentum operators. The Hilbert space
tion, in which case the decay will be Gaussian, or an orbidimension of the top i&N=2J+1. The representation is such
whose shape is distorted by the perturbation, in which casthatJ, is diagonal. As initial states we use minimum uncer-
the decay will be power law. Fidelity decay simulations un-tainty angular momentum coherent states centered around
der quantum kicked rotor evolution support a suspicion of(¢;, 6) [3] and employ a QKT ofJ=500 unless otherwise
Ref. [35] that quantum states are more prone to Gaussianoted.

decay due to the quantization of the phase space tori. For convenience we number the states assuming a 10
The quantum fidelity decay of an initial stdtg) is given X 10 grid evenly spaced in th&and ¢ directions as seen in
by Fig. 1. The lines of the grid are numbered such that the

1=t It [2 number of a state, centered at an intersection of the grid, is
F(O) = K| U™Ulvl | @ getermined by adding the numerical values of the horizontal
whereU is the unperturbed evolutiomp=Ue"‘5V is the per-  (numbers on leftand verticalnumbers on the bottontines.
turbed evolution is the perturbation strength, aiMlis the  State 1 is thus located &=-m/2,0=7/10) and state 100
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FIG. 2. (Color onling Fidelity decay for quantum kicked top
) ] ) ) with kr=1.1, &=0.001, andJ=500, of two different coherent

FIG. 1. (Color onling Twenty-five classical orbits on the phase states. Onétriangles placed in the region of stable KAM tori sur-
space of the classical kicked tdg;=1.1(dark), andkr=1.3(light).  younding the fixed pointg=—-/2,6=/2) (state 52, up triangle in
The same initial points are used to map the orbits so as to demolig 1 every 20 steps showmwhere the perturbation effects a
strate the effect of théy perturbation. The change of kick strength change in phase space orbit frequency, and the dswid line)
primarily affects the frequency of the orbits around the stable poinfjaced in the region surrounding thig=0,0=/2) stable point
at(¢p=-ml2,0=m/2) (X). Thus, under & perturbation, we ex- (state 56, diamond in Fig.)where the perturbation causes a dis-
pect coherent states placed there to exhibit a Gaussian fidelity degtion of the phase space orbit. As expected, the former displays a
cay. The change of kick strength does affect the shape of the centraaussian fidelity decaydashed ling e Tt with [e=4.5x10°
tori around the(¢=0,6=/2) (x) fixed point. Thus, under thér while the latter exhibits a power-law deceyt™ P (dash-dotted ling

perturbation we expect coherent states centered in that region tRith ap=1.15 andcp=950. The insets show the change of fidelity

exhibit a power-law fidelity decay. The same holds for the rotationaldecay rate as a function of perturbation strengkh, The top inset

tori a_t th(_a edges of the ph_ase space. The different markers deline%?ots 5y versusce for states that decay as proportionalt® (+),
the fidelity decay behavior of coherent states centered at thos[eus (diamond, andt13 (x) (as explained later, different coherent

points. The states marked by circles, up, down, left, and right poin'[-States decay with different power law&he points on the log-log

ing triangles, five-pointed stars, and six-pointed stars mark state ot are well fitted bvce= 1 ; 1.15

b . . . . ycp=0.855" (dotted ling, 0.3557 (dashed
tk;fat exhlbllt Gaus'_5|a_n :ecay .behaworfaht d(ljfferent rates. While w ine) and 0.853}1'3 (dash-dotted linge From these and numerical
offer no cleara priori, determination of the decay rate, states Cen'tresults of other states we assume the following form for power-law

tered on the same orbit _tend_ to decgy'at similar rates. Though di ecay: Fp(t)=c(8t)™. The lower inset shows the change of the
ferent orbits may also give rise to similar decay rates, the gener

di dasl G . h further f aussian rat€'s as a function ofs; (marked by shapes correspond-
trend Is toward a s ower aussian as the stat_es move urther rori‘ﬂg to those in Fig. 1 As addressed below, coherent states centered
the (¢p=-m/2,0=m/2) fixed point. Power-law fidelity decay rates

3 ) o . __in different areas of phase space exhibit different Gaussian decay
depend on distance from areas with large tori distortions, the regiofies with the rate slowing as the states move further from the
surrounding the central fixed point and the dip in the rotational '

' ~ “'stable point. The dependence of the rate on perturbation strength,
torus at the top and bottom of the figure. The closer a state is Q owever is aIway:FGocaﬁ (dotted ling

these regions, the slower the power-law rate. Gaussian and power-
law fidelity decays are shown in Fig. 2 where the shapes correspond

to the markers used in this figure. certain circumstances, be faster than the decay of the corre-
sponding chaotic fidelity.

at (¢=2m/5,0=m). In this way, the fixed point af¢= The parallel between the fidelity of quantum states and

-ml2,6=m/2) is number 41 while the fixed point dtp  their classical counterparts is not, however, the case in gen-

=0,0=7/2) is number 46. eral. Some states initially centered in areas of apparent phase

Figure 2 shows that state 52, centered in the region o$pace orbit distortion exhibit the Gaussian fidelity decay ex-
phase space surrounding the fixed pgint—m/2,6=m/2),  pected from perturbations of an orbit’s frequency. We show
exhibits the expected Gaussian behavigangles, and that this in the quantum version of the system explored classi-
state 66, near the fixed poitp=0,0=/2) (solid line), ex-  cally by BCV[35], the kicked rotor. The classical dynamics
hibits the expected power-law decay. These states parallel t## the kicked rotor is given by
expected _classical fidelity de_:cay behavior. Pt = pr+ (ke/27m)sin(2mrqy),

The existence of states with power-law decay supports the
contentions of Ref.31] in explaining contradictory results in -

i . : Ot = O  Pre1 4)
regular system fidelity decay behavior. These states bias the
average to look like a power law which is slower than thewhere kg is the rotor kick strength and —-1£2q,p<1/2.
exponential fidelity decay of chaotic systems. Many statesi-or ky=0.3 the phase space of the kicked rotor has a stable
however, exhibit Gaussian fidelity decay which may, undeifixed point at(q=-0.5,p=0) (X) and an unstable fixed point
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FIG. 3. (Color onling Thirty orbits on the phase space of the  (a)
classical kicked rotorkz=0.3 (dark andkg=0.35(light). The same 10
initial points are used to plot the orbits of both maps in order to AN
highlight the effect of ajg perturbation. Well within the separatrix,
the effect of thedgr perturbation is generally to change the fre-
quency of the KAM tori. Outside the separatrix, however, txe
perturbation essentially changes the shape of the tori. Also shown
are the stable(q=-0.5,p=0) (X) and unstablgq=0,p=0) (+)
fixed points and states used in the text to demonstrate Gaussian i
(squarg and non-Gaussiaftircle, diamondl fidelity decay. Classi-
cally, states outside the separatrix are expected to exhibit power-law
fidelity decay. In the quantum realm, however, we find that many

such states exhibit Gaussian decay, an example of which is marked 10
by the triangle.
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at(q=0,p=0) (+). The phase space is divided into two dis-
tinct regions, orbits around the stable fixed point, and rota-

tional motion, as shown in Fig. 3. The orbit at the border FIG. 4. (Color onling Log-log and log-linear plots of three co-
between these regions is the separatrix. As with the QKT wéerent state fidelity decay behaviors under evolution of the quantum
plot phase space orbits of differek to demonstrate the kicked rotor withkg=0.3, 2=0.002, andN=500. One of the states
effect of a change of kick strength perturbation on different’s centered inside the separatrix(gt=-0.4 p=0.1) (squares every
parts of the classical phase space. The shapes of certaif time s_tep)s wht_are there is no appa_rent distortion of _KAM tori.
KAM tori, such as the ones just outside the separatrix, ele'he Iocatl_on qf this state on the cl_assmal phase space is marked k_)y
hibit large deformations, while others, such as the innef Sduare in Fig. 3. Another state is centered outside the separatrix
circles within the separatrix, do not. As shown[88), states (4= ~0-1.p=0.1) (solid line, diamond in Fig. Bwhere there is no-
in the former region exhibit Gaussian classical fidelity deca)}'F:eable KAM torf dlsFort!on due to the Pe”‘{[)bo"’gﬂ;’z“' The fc_)rmer
while those in the latter region exhibit power-law decay. q|splay§ a Gaussian fidelity decé(jﬁ§hed linge™ and eXh'.b'
To study quantum fidelity decay of the kicked rotor, we !ts fidelity recurrences every 23(_)0 time st¢pg]. The Iatter_ exhib-
use the unitary operator describing the quantum kicked roto'fj a decay Wh.'Ch.'S non-Gaussian. A power law proportuonaﬂto
KR) [32] ash-(_jotted lingis plot_ted for comparison. The_ thqu staftri-
@ angle is centered outside the separatftixiangle in Fig. 3 but
Un o = g ip?agikg cos2mqN/m 5 nonetheless exhibits a Gaussian dey)=e 510 . This state
QkR=€ € ! ) does not exhibit fidelity decay recurrences.
whereN is the Hilbert space dimension. For our simulationsthe KAM tori (q=-0.1,0=0.1) (diamond in Fig. 3 The

we use QKRs oN=500,1000kg=0.3, corresponding to & former exhibits a Gaussian fidelity decay while the latter

classical kicked rotor with nonchaotic dynamics, and perturexhibits a decay which is non-Gaussian and resenbletsis
bation_ s_trengthsﬁR:O.(_)OZ,O.OOM. As initial states we use not quite a power law. An exact power law does not emerge
the minimum uncertainty coherent states describe@Bif]  for any of the states simulated for the QKR even for pertur-
centered arounéy;, p;).

bation strengths as low a%=0.0005. Figure 4 also shows a
Figure 4 shows the fidelity decay of quantum coherenttate (q=-0.1,0=-0.4), centered on a rotational orbit out-

states centered in different regions of phase space. Ongide the separatrix which, despite the classical prediction of a
(squaresin a phase space region where the effecoefis  power-law fidelity decay, exhibits Gaussian dedajangle
primarily to change the frequency of the KAM tofg= in Fig. 3.

-0.4,p=0.]) (square in Fig. B and anothefsolid line) in a As mentioned above, BCY35] predict a lack of corre-
phase space region whefg primarily distorts the shape of spondence between classical and quantum fidelity decay, not-

(b) 2000 4000 ; 6000 8000 10000
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ing that the quantization of KAM tori tends to suppress tran- 0.1f
sitions between them. This would enforce a change of
frequency as the primary effect of the perturbation. The lack 0.08!

of an actual power-law decay at any point in the QKR orbits
implies such a suppression throughout the region of rota-
tional motion. Lack of correspondence to classical dynamics

for rotational QKR orbits has also been noted with respectto <
fidelity recurrence$32]. Fidelity recurrences, as seen in Fig. 0.04}
4, are predicted classically in all regions of phase space. Yet,
in the quantum realm, they do not occur in the QKR rota-
tional tori. Referencd32] notes that these regions have a
high density of states and the enhanced quantum interference ; Y
may cause the lack of classical correspondence. A similar eege 00 150 200 250
argument can be proposed here, as enhanced quantum inter-
ference may be especially sensitive to perturbations and
cause the fast Gaussian fidelity decay.

0.06f

300 Al le

FIG. 5. (Color onling Contribution of QKT eigenstates for co-

. . herent states 52—-5@eft to right) versus extent of those eigenstates
In an attempt to further understand what dlﬁerem'ate%n J, with shapes as in Fig. 1. As the states move further from the

states that exhibit Gaussian fidelity decay from thos_e,thaiBw-extent((/;:—77/2,0:77/2) fixed point more eigenstates have
exhibit power-law'decay we look at the spectra Of_ the In"“‘"‘lsignificant contributions and the height of the Gaussian contribution
coherent states with respect to the QKT eigenbasis as a funggrye decreases. Consequently, the Gaussian fidelity decay rate de-
tion of the extent of the eigenstateslp Following Pere$3]  ¢reases. State 56, made of only high-extent states, does not have a
the extent of a state with respect to the operajas defined  Gaussian extent spectrum and exhibits power-law fidelity decay.
as The inset shows coherent states 646t to right) which follow a
similar pattern.

A3 = 3] ) = (3wl (6)
_ . ) between the types of states can be seen in Fig. 7 below.

The extent is relgted to the poefﬂment Qf the quadratic term e suggest that the relationship between fidelity decay
in the power series expansion of the fideli@]. Thus, we  gng the extent spectrum may be understood as follows.
expect it to provide insight into the expected fidelity decaygistes exhibiting power-law decay have a large extent in the
behavior. We calculate the extent of all the eigenstates of thgjrection of the perturbation],. When the coherent state is
QKT and see how much each of these states contributes 10 tyrhed these states cannot spread out much more in the
given coherent state. The contribution is quantified by arhertyrbation direction. Rather, they interfere with each other
amplitudeA; =[(ys| ))|* wherey is the initial coherent state  ang the decay is slow. Coherent states exhibiting Gaussian
and ¢; is the jth QKT eigenstate. decay, however, are spread out in extent space. The pertur-

On the extremes, the coherent state centered at the stalfgtion affects each of these states differently, spreading them
fixed point(¢=-m/2,6=7/2) is primarily (A=0.95 com- oyt inJ, and causing a ballistic decay. As the coherent states
posed of one eigenstate withiJ,|=17.3. The primary con- move away from the low-extent fixed point the average ex-
tributors to the coherent state centered at the stable fixe@nt of these states grows and the Gaussian fidelity decay
point at(¢=0,6=/2) are four eigenstates each with ampli- gets slower until the transition to power-law decay. This de-
tudes of 0.21 and\|J|=353.7. In both cases the fidelity scription holds for states in the Gaussian and power-law fi-
barely decays as the state exists in a constricted Hilbert spaelity decay regions for the QKT phase space. States at the
[3,11,18. border between these regions and states very close to the

Most coherent states, however, have significant contribufixed points have different extent spectra and, thus, exhibit
tions from many different eigenstates. In Fig. 5 the contribu<idelity decay behavior that is neither Gaussian nor power
tion to coherent states 52-56 is plotted versus the extent ¢hw. These regions will be discussed below.
the eigenstates and in the inset the same is plotted for states A full exploration of the extent and its relation to fidelity
64—67. The general pattern emerging from the figiared  decay is beyond the scope of this paper. However, looking at
from states not shownis clear. Coherent states exhibiting the spectrum of a coherent state as a function of the extent of
Gaussian fidelity decay have a Gaussian spectrum of contrihe contributing basis states with respect to the perturbation
butions from eigenstates with low- to middle-range extentsoperatorV (or some function therepfcan help identify the
in J,. As the coherent states move away from the low-extentegions of different decay behaviors.
(¢p=—m/2,0=7/2) fixed point(with distance determined by We now embark on a more extensive exploration of co-
the number of passing trajectorjesiore and more states herent state fidelity decay behavior in the regular regime of
contribute and with lower amplitudes, higher extent, and g&he QKT. With this aim, we have calculated the fidelity decay
more localized extent range. The Gaussian shape remaifisr coherent states spaced throughout the classical phase
until the coherent states enter the region of power-law fidelspace for a number of perturbation strengths and Hilbert
ity decay. States with power-law fidelity decay have veryspace dimensions. A large variety of behaviors exist, though
narrow spectra at high extent. The difference between theie concentrate only on the initial decay before any fidelity
types of states is clearly seen in Fig. 5 and the transitiomecurrences. In an attempt to organize the data in a straight-
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10° o S : in phase space and is the only term mopriori calculable
- from our analysis. This result is in consonance with the semi-
classical approach outlined ja1].

For coherent states in regions of power-law fidelity decay,
we find no change in decay rate wiltas long as the fidelity
decay remains a power law. Thus we write the following
equation for the power-law decay behavior:

Fp(t) = (&)~ (8)

where ¢ and ap depend on the coherent state’s location.
: However, as] is decreased the fidelity decay behavior does
102 Foo 200300400 1 00 . change; it shifts from power law to Gaussian, as shown in
10' 10° 10° Fig. 6 (for state 56, marked diamond in Fig). This shift is
t due to the increasing size of the initial coherent state making
FIG. 6. (Color onling Coherent state Sédiamond in Fig. 1 it more likely that the states will overlap with KAM tori on

fidelity decay(every 16th time step plottedor the QKT withk; ~ Whom the perturbation effects a change of frequency. Coher-
=1.1,8;=0.005, and)=500(circles, 300(squarek and 100(dots. ent states centered more deeply in the power law decay re-
Lowering J causes the fidelity decay behavior to transition from gion (such as state 77 marked plus in Fig.have a slower
power law to Gaussian. The inset shows the rate of Gaussian fidelransition to Gaussian decay when decreasing

ity decayl'g as a function ofl for some coherent states. We find a ~ As we have seen, the fidelity decay behavior in general,
linear relationshipI'g=cgJ with ¢g=2.3x1077, 5.5x107, 6.7 and the rates oFg(t) and Fp(t) specifically, are dependent
X107, and 1x 10°® (bottom to top shown. on the exact location of the initial coherent state with respect

forward fashion we explore fidelity decay as it relates to theto the underlying classical phase space. This dependence is
. . ' EXP deity yas .emphasized in Fig. 1 by using different shapes to mark the
following variables: perturbation strength, Hilbert space di-

mension, and position of the initial state with respect to thecenters of coherent states_exmbltmg Gau_ssumlmle, square,
. ; : up, down, left, and right triangles, five-pointed star, and six-
underlying classical phase space. We also study hitherto un-"! g -
. . .~ pointed star and power-law(diamond, +, dot, *) fidelity

observed exponential decay which may occur after an initia : . )
) . . decay. States with practically equivalent decay rates are rep-
Gaussian decay and explore how this decay regime behaves X
. . . resented by the same shape, with the rates themselves shown
with respect to the above variables. We note that an extenswlﬁ Fio. 2. Based on our simulations we cannot formulate
semiclassical treatment of regular fidelity decay has been 9. <

. . . clear-cut rules for the decay rate of a given coherent state.
done in Ref[11]. Our purpose here is to outline an approach . 4

) . However, we make two observations. First, states along the

based on knowledge of the system'’s classical phase space. ; L

; . Same phase space orbit tend to have similar decay rates. Sec-

We first address the dependence of the fidelity decay rate .

, X and, I', the rate of Gaussian decay, decreases as the states

as a function of perturbation strength. For coherent states

hibit G an fidelity d (t)= Tt ical get further from the(¢p=—=/2,6==/2) fixed point (with
exhibiting a Gaussian fidelity decdyg(t) =€ ¢, numerical  yisiance measured by the number of trajectories between the

simulations verifyI‘Go<6$,_ as derived in11]. This depen-  fiyeq point and the center of the coherent Stawe have
(jence is demonstrated in the lower inset of Fig. 2 &r  gready seen consequences of this latter observation in the
=0.0001,0.0005,0.001,0.005,0.01, aimlS00. For coher-  gyient spectra. Similarly, for states exhibiting power-law de-

ent states exhibiting a power-law decBy(t)=cpt™*", NU- ¢4y pehavior, the power increases as the states get further
merical results for the above perturbation strengths suggegiom regions of large KAM torus distortion.
that cp is proportional to&*?, from which we conclude e now explore the fidelity decay of states at the border
Fp(t)=c(s7t)"*°. The upper inset in Fig. 2 demonstrates thispetween the Gaussian and power-law phase-space regions
behavior with states whose power-law decay rateris1,  and of states close to the fixed points. These regions exhibit
1.15, and 1.3. a variety of decay behaviors which are reflected in the extent
To address the fidelity decay behavior as a function ofspectrum. Looking at the transition from Gaussian to power-
Hilbert space dimension we choose one perturbation strengiiy decay away from the fixed points we note that the tran-
6r=0.005 forJ=100,200,300,400,500. The fidelity decay sition is a rather smooth one in both the decay behavior itself
is calculated for coherent states of appropriate dimensiognd the extent of the contributing eigenstates. Figure 7 dis-
centered at specified points in phase space. For states C&flays these behaviors for coherent statesdw/5 and ¢
tered in regions of Gaussian fidelity decay we find a Iinearranging from O tom/ 10 (between states 76 and 77 of Fig. 1
relation betweerd andI'g, as shown in the inset of Fig. 6, For the fidelity, the decay slows as the state leaves the region
the slope of which depends on the coherent state’s location ighere the dominant perturbation effect is on the frequency of

T 10

phase space. _ _ _ _ the orbits and enters the region where the dominant pertur-
~ We can thus write the following equation for the Gaussianpation effect is on the shape of the orbits. In the extent spec-
fidelity decay behavior: tra the transition is manifest by the Gaussian shape narrow-

7 ing on the side of large extent, eventually becoming almost
flat except for a tail reaching toward the higher-extent eigen-
whereyg depends only on the initial coherent state’s locationstates. Similar behavior is found for other states in the border

FG(t) = e_FGtz, FG = ’}/GJ62
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F(t)

FIG. 7. (Color onling Fidelity decay of coherent states with 0.020 A
=47/5 and¢ ranging from O(state 76 and 7/ 10 (state 77 for the ’ !
QKT with ky=1.1, 6;=0.001. The states shown are fr /100, g ABA
37/100, 57/100, 67/100, 77/100, and 9/100 (bottom to top. 0.015 i =
The decay can be seen to transition smoothly from Gaussian to Jx 0208
power law. The inset shows the extent spectrum of the states at P Oozﬁ 00 A
=37/100 (circles, 67r/100 (diamonds$, and 97/100 (X). As the 0.01+ B o0 a 5
power-law fidelity decay region is approached, the Gaussian spec- x % x> 5 O
trum gets filled in and narrows on the side of higher extent, becom- xXxX: ?x *o AAX xO &
ing almost flat except for a tail of high-extent states. 0.005} % x,;5 % @° RA . o &

4 AA x .
region between Gaussian and power-law fidelity decay. 1 . OOA
- A

The region surrounding thé$=0,6=7/2) fixed point BL o o
contains states exhibiting fidelity decay behaviors not de-  (b) A,
scribed by a Gaussian or power law and extent spectra dif-
ferent from those seen above. Starting with the coherent state
centered at the fixed point, the fidelity oscillates close to one
as the coherent state is comprised almost entirely of the
highest-extent QKT eigenstates. As the coherent states move FIG. 8. (Color onling The top panel shows the fidelity decay of
away from the fixed point the highest-extent eigenstates stikoherent states with ranging from/2 to 677/10 and¢=0 for the
give the largest contributions while the next-highest-extenQKT with kr=1.1, §=0.001. The states shown are &+ 7/2+0,
eigenstates give increased contributions. The fidelity decay/100, 2m/100, 37/100, 47/100, and 5r/100 (top to bottom.
in these regions starts off as a power law but exhibits &lose to the fixed point the fidelity oscillates close to 1. As the
second stage of Gaussian decay similar to edge of quantuftes move further away from the fixed point, thfe fidelity dec.ays in
chaos decay$21]. Moving further, eigenstates with lower two stages, starting as a power law and becoming a Gaussian. For
and lower extent become dominant. However, the extentomparison we fit the initial decay of thé==/2+27/100 state

i i i -1 i -

spectrum is not Gaussian, as would be expected for statd4th @ power law proportional td™" (dotted ling, the ¢=m/ 2
exhibiting Gaussian fidelity decay, but is extended on the+377/100 state initial decay with a power law proportlonalttér2
ashed ling and the second-stage decay with a Gaussiar

side of lower extent eigenstates. At this increased distancé L o _ _ _ o
from the fixed point, the first-stage fidelity decay transitions"ith I'ss=8x 10" (chained ling. Moving further away, the initial
wer law becomes more Gaussian while the second stage starts

from _power law to Gagssmn, and the second-st_age decaﬁgttening to power law. The inset shows every 60 steps of the
transitions from Gaussian to power-law decay. Finally, thefidelity decay for the statess=0, G=a/2+6m/10 (triangles

initial Gaussian fidelity decay flattens into one stage 0f77-r/100(diamond$, 87/100(+), 97/100(x), andar/10 (state 56,

power-law decay while the extent spectrum continues ﬂatéquare}s Here, the initial decay starts off as Gaussian and rebounds

tening in the direction of higher-extent states while forming a, . 2
complicated flattened bulge at lower-extent states. All ofmtoapower'law decay. For comparison we plot the Gausskf
. S A - © T Pwith I'g=3.9x 107 (chained ling and the power law proportional
these behaylors are exhibited in Fig. 8. Similar behavior 1J0 t-1.05 (solid line). As the states continue to move away from the
found in regions of ,COherem ,States 3-5 ar_]d 87_8,9' . fixed point, however, the Gaussian flattens until there is a single-
Coherent states in thg region s_urround_lng _the flxe_d POINEahavior power-law decay, proportional ttd-15 (dashed ling The
at(¢=-m/2,0=m/2) exhibit behavior that is slightly differ- oom panel shows the extent spectrum of the states @vith/2
ent from the states in the region surrounding te=0,60  +54/10 (O), 67/10 (triangles, 77/10 (diamond$, 97/10 (X),
=/2) fixed state. At the fixed point the fidelity simply 0s- and state 56squares As the coherent states are moved further
cillates close to 1. As the coherent states move away fromaway from the fixed point the spectra flatten at higher-extent eigen-
the fixed point the oscillations become larger in amplitude states and a bulge grows at lower-extent eigenstates.
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FIG. 9. (Color onling The upper plot shows two coherent states FIG. 10. (Color onling Coherent state Sécircle in Fig. 3 fi-

eyo_l\{e_d_under th‘N:_lOOO‘kR:OB _QKR with 3z=0.0014 thaF €X- " delity decay(every fifth time step plottedfor the QKT with k;
hibit initial exponential decay despite the fact that the QKR is in the:1_1 and J=500, for perturbation strengthg;=0.01 (squarek

regular regime. The lower plot shows three coherent states und‘?f.0075(diamond$ 0.005 (triangles, 0.0025(+), and 0.001(O).
the same QKR evolution which exhibit initial Gaussian decay that-l-he fidelity decay of the stronger perturbations shows a stage of

transitions to exponential decay. For two of the states the ﬁde"tyexponential decay after the initial Gaussian. This stage is fitted by
freezes after the initial Gaussian decay. The fidelity of all threeF(t)zlze—o.osa (dash-dotted  line for 8;=0.01, F(t)

states exhibits echo resonances similar to those discussed in RQIO.OZ&‘O-OOME (solid lin® for 6;=0.0075, andF(t)=7e0052
[31] for ergodic perturbations. (dashed ling for 8;=0.005. For the strongest perturbatiofs

the recurrence time increases, the initial decay becomes mofe-01: 0.0075, there is also a period of transfer between the two
Gaussian, and the maximum fidelity reached on the recu'f_ldellty decay regimes, while fo6=0.005 this transition period is
rence is lower. This continues until full Gaussian decay be_nonexistent. For weaker perturbations the exponential stage of fi-
havior emerges. The extent spectra reflect this behavior, g(gl_elity decay disappears altogether. The faster Gaussian decay of the

ing from a dominant low-extent state to an eventual Gaussiaf2Ker perturbations and the wide range of exponential decay rates
shape. ead to the counterintuitive result that a stronger perturbation leads

We also note the presence of states with unexpected ﬁdeﬁ_c-’ a higher fidelity as seen in the region 200< 600 for the oy
ity decay behavior in the QKR. Figure 9 shows examples 01‘:0'01 decay and across the whole plqtted region for &e .
y_ Y _ - =0.0075 decay. There is no clear correlation between perturbation

N‘1°90 Coherent_ states under Qm_9'3’.5R_0'0014 strength and exponential decay rate.

evolution that exhibit initial exponential fidelity decatop

plot), though the QKR is regular, and fidelity “freeze” as Gaussian decay continues until fidelity saturation. As the per-

discussed in Ref31], though the perturbation is nonergodic. turbation strengthens the second-stage exponential emerges.
Beyond the initial Gaussian fidelity decay of some coher4n addition, there exists a transition period between the two

ent states, there may exist a second, slower, stage of expdecay behaviors. Thus, weaker perturbations lead to longer

nential fidelity decay behavioE (t)=czePE, before satura- times of Gaussian fidelity decay during which the fidelity of

tion. This stage is prevalent for strong perturbations butronger perturbations may have already transferred to the

disappears for smaller perturbaticfos smaller Hilbert space Slower exponential. In this way, there may be a significant

dimension with the same perturbation streng@he specif- amount of time in which the fidelity of the stronger pertur-

; f thi ial | he phaslation (diamonds, trianglgsis actually higher than that of
ics of this exponential decay depend strongly on the p ast%e weaker perturbatiofsquares,+). This phenomenon is

space location of the initial coherent state. The slower expo- S T -
nential decay of this second stage gives rise to an excitinghOWn in Fig. 10 for thér=1.1, J=500 QKT. An exponen-

] . ; . flal region of decay is manifest for perturbation strengths
phenomenon: a stronger perturbation leading to a higher fix _q 61 "0 0075, and 0.005, but not for weaker perturbations

delity than a weaker perturbation of the same type. 5;=0.0025 and 0.001. Thus, for times 300 the fidelity of

. The golden rule ex'ponentlal flde'hty deca}’ term Men-y¢ jeast one of the stronger perturbations is higher than the
tioned above for chaotic systems exists also in regular SYSidelity of a weaker perturbation.

tems[33]. We do not identify this term with the exponential  Thg rate of the exponential also depends on the perturba-
observed here since, as we show, the exponential here ign strengths;. However, our numerical simulations do not
strongly dependent on the initial state. show any simple relationship between the exponential rate

As with the initial fidelity decay behavior we attempt a and the perturbation strength. Rather, the rate changes dras-
systematic numerical analysis of the second-stage exponetically ranging from practically zero, decay freeze, to a fast
tial decay. We first study the exponential as a function ofexponential. This also allows a stronger perturbation to have
perturbation and then explore the effect of the location of thea higher fidelity than a weaker one. This is exemplified in
initial coherent state. Fig. 10 by thes=0.0075 perturbation whose fidelity decays

Figure 10 demonstrates that weaker perturbation®)  very slowly and, thus, after a time, is higher than the fidelity
exhibit no exponential fidelity decay stage. Rather, theof all of the weaker perturbations.
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The possibility of a stronger perturbation leading to a
higher fidelity may have important consequences for quan-
tum simulations in which a quantum system is trying to
simulate a given dynamics: a strong error in the dynamics
may be easier to correct via quantum error correction than a
weak one. This could allow for an interesting error-
correction scenario. A weak error strongly affecting a system
should be purposelgtrengthenedso as to more accurately
perform the desired simulation. This would be especially sig-
nificant in a case where the effect of the error is too strong

for conventional quantum error techniques but can be ¢
brought below the error-correction threshold if the error is *7
strengthened. 3
The existence of the exponential fidelity decay region . . o,
may be related to the quantum freeze of fidelity discussed in 1000 1200

[31] for ergodic perturbations. In fact, the lower plot of Fig.

9 displays the fidelity decay of coherent Statgs evolved by.the FIG. 11. (Color onling Fidelity decay for different coherent

.QKR which _actually freeze, though the applied perturbat'onstates(every fifth time step plottedor the quantum kicked top with

IS nonergodm. e . . kr=1.1,3=500, andsr=0.01. After the initial Gaussian the fidelity
The_reg'on of e_Xponem'al fidelity decay varies drama_m'decay transitions to an exponential, the rate of which depends

cally with the location of the coherent state on the underlyingsongly on the location of the coherent state with respect to the

classical phase space. This is displayed in Fig. 11 where @gnderlying classical phase space. The states shown areli&3

wide range of exponential decay rates are found for differengnonds, 54 (0), 55 (triangles, and 74(squares All of these states

coherent states though they undergo equivalent evolution. IRave initial Gaussian fidelity decay, as seen in Fig. 2, which transi-

addition, the time of the transition period from Gaussian totions into an exponential decay. The current figure exhibits the wide

exponential varies from state to state. range of exponential decay rates and transition times that can occur.
In conclusion, we have provided a numerical study ofStarting with the lowest plot we find exponential decaysFof)

fidelity decay behavior for coherent states in a quantum sys=e %% (diamonds, 10e70034% (circles, 0.17%70012 (triangles,

tem whose classical analog is quasi-integrable. We find thaind 0.0&™°°%° ! (squares These exponentials are displayed by

the initial fidelity decay behavior and rate will depend on thedashed lines in the figure.

perturbation strength, Hilbert space dimension, and initial

coherent state location. The quantum fidelity decay behavior

generally corresponds to the classical fidelity decay exploretion of the coherent state. The existence of this second-stage

in [35] and the prediction therein: quantum states tend morelecay behavior leads to the counterintuitive result that stron-

toward Gaussian decay due to the quantization of the phasger perturbations may lead to higher fidelity, a phenomenon

space orbits. In addition, we show that the spectrum of thevhich may be important for quantum computation.

initial coherent state with respect to the system eigenstate

extent contains information regarding the fidelity decay of The authors acknowledge support from the DARPA

that state. Finally, we find that after initial Gaussian decayQUIST (MIPR 02 N699-00 program. Y.S.W. acknowledges

behavior, there may be a second stage of exponential dec#iye support of the National Research Council through the

for strong perturbations. The rate and inception of the expoNaval Research Laboratory. Computations were performed

nential decay depend on the perturbation strength and locat the ASC DoD Major Shared Resource Center.
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